
HOW TO USE THIS DECK

This slide deck is meant to accompany the Ansible RHEL workshop, both
sections if needed.
Note that this deck is optional - the workshop content explains each and
every Ansible idea in detail already.

HOW TO IMPROVE THIS DECK

The workshop is a collaborative effort. Help us to improve it! You can leave
comments, and the BU will make sure to work on this. Tag for example
Roland (Wolters) or Sean (Cavanaugh) to ensure that they pick it up.

Speaking about the BU: the fact that this deck is now owned by an
organization and not individuals anymore hopefully ensures for the future
that the deck stays up2date over time.

THANKS

HUGE THANK YOU to the following people - without them, this deck would
not have been possible.

First and foremost, thanks to:

KEV

He did the base work for this slide deck by migrating everything from
ansible.red, and his fingerprint shows almost on each and every slide.
Thank you so much for your cooperation and helping us and of course for
submitting this in the first place.

But others should not go unmentioned:

Russell
Matt
Will
Götz

Thanks for providing input, helping proofread, error check, and keep Kev
smiling when he needed to.

Ansible RHEL Automation Workshop
Introduction to Ansible RHEL Automation for System Administrators and
Operators

3

● Timing
● Breaks
● Takeaways

Housekeeping

4

What you will learn

● Introduction to Ansible Automation
● How it works
● Understanding modules, tasks & playbooks
● How to execute Ansible commands
● Using variables & templates
● Tower - where it fits in
● Basic usage of Tower
● Learn major Tower features: RBAC, workflows and so on

5

Introduction
Topics Covered:

● What Ansible Automation is

● What it can do

"Insanity is doing the same thing over
and over again and expecting different

results."
-(mis?)credited to Albert Einstein

"Insanity is doing the same thing over
and over again manually when you

could have automated it with Ansible."
probably not Albert Einstein

8

Automation happens when one person meets a
problem they never want to solve again

9

ACCELERATE INTEGRATE COLLABORATE

When we talk about
“repeatable processes,”
unfortunately, we’re often

thinking of manual steps to
assure we end up at the

same destination as
before.

11

What is Ansible Automation?

Ansible Automation is the enterprise
framework for automating across IT
operations.

Ansible Engine runs Ansible
Playbooks, the automation language
that can perfectly describe an IT
application infrastructure.

Ansible Tower allows you scale IT
automation, manage complex
deployments and speed productivity.

RED HAT ANSIBLE TOWER
Operationalize your automation

RED HAT ANSIBLE ENGINE
Simple command line automation

CONTROL DELEGATION SCALE

SIMPLE POWERFUL AGENTLESS

FUELED BY AN INNOVATIVE OPEN SOURCE COMMUNITY

Why Ansible?

Simple Powerful Agentless

App deployment

Configuration management

Workflow orchestration

Network automation

Orchestrate the app lifecycle

Human readable automation

No special coding skills needed

Tasks executed in order

Usable by every team

Get productive quickly

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

Get started immediately

More efficient & more secure

13

Ansible Automation works across teams

DEV QA/SECURITY I.T. OPERATIONSBUSINESS NETWORK

What Can I Stick Together With This Glue?
The bottle gives you suggestions as to what materials work best

GLUE TWO THINGS TOGETHER AND MAKE THEM STICK

Do this...

Wood

On these...

Stone Ceramics Bricks Metal

Glass Foam And more...

What Can I Automate Using Ansible?
Automate the deployment and management of your entire IT footprint.

Orchestration

Do this...

Firewalls

Configuration
Management

Application
Deployment Provisioning Continuous

Delivery
Security and
Compliance

On these...

Load Balancers Applications Containers Clouds

Servers Infrastructure Storage And more...Network Devices

16

Cloud Virt & Container Windows Network Devops Monitoring

Ansible automates technologies you use
Time to automate is measured in minutes

AWS
Azure
Digital Ocean
Google
OpenStack
Rackspace
+more

Docker
VMware
RHV
OpenStack
OpenShift
+more

ACLs
Files
Packages
IIS
Regedits
Shares
Services
Configs
Users
Domains
+more

Arista
A10
Cumulus
Bigswitch
Cisco
Cumulus
Dell
F5
Juniper
Palo Alto
OpenSwitch
+more

Jira
GitHub
Vagrant
Jenkins
Bamboo
Atlassian
Subversion
Slack
Hipchat
+more

Dynatrace
Airbrake
BigPanda
Datadog
LogicMonitor
Nagios
New Relic
PagerDuty
Sensu
StackDriver
Zabbix
+more

Storage
Netapp
Red Hat Storage
Infinidat
+more

Operating
Systems
Rhel And Linux
Unix
Windows
+more

✾ Ansible is NOT just a Config Management Tool.
☇ Ansible is NOT just an Application Deployment Tool.
☁ Ansible is NOT just a Provisioning Tool.
☡ Ansible is NOT just a CI/CD Tool.
✎ Ansible is NOT just an Audit and Compliance Tool.
➰ Ansible is NOT just an Orchestration Tool.

Ansible is a powerful automation engine…
with strong use cases for all of the above tasks.

Endless Use Cases For Ansible

18

Section 1
Engine

19

Exercise 1.1
Topics Covered:

● Understanding the Ansible Infrastructure

● Check the prerequisites

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLAYBOOKS ARE WRITTEN IN YAML
 Tasks are executed sequentially
 Invoke Ansible modules

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 MODULES ARE “TOOLS IN THE TOOLKIT”
 Python, Powershell, or any language
 Extend Ansible simplicity to the entire stack

MODULES

CORE NETWORK COMMUNITY

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

HOSTS

NETWORK DEVICES

CLI

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

MODULES PLUGINS

INVENTORY

 INVENTORY

 [web]
 webserver1.example.com
 webserver2.example.com

 [db]
 dbserver1.example.com

 [switches]
 leaf01.internal.com
 leaf02.internal.com

 [firewalls]
 checkpoint01.internal.com

 [lb]
 f5-01.internal.com

ANSIBLE AUTOMATION ENGINE

USERS

CLI

ANSIBLE PLAYBOOK

MODULES PLUGINS

INVENTORY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

CMDB

HOSTS

NETWORK
DEVICES AUTOMATE EVERYTHING

 Red Hat Enterprise Linux, Ubuntu, Debian,
 Cisco routers, Arista switches, Juniper routers,
 Windows hosts, Checkpoint firewalls and more

25

LINUX AUTOMATION

ansible.com/get-started

AUTOMATE EVERYTHING LINUX
Red Hat Enterprise Linux, BSD,

Debian, Ubuntu and many more!

ONLY REQUIREMENTS:
Python 2 (2.6 or later)

or Python 3 (3.5 or later)

150+
Linux Modules

https://www.ansible.com/resources/get-started

How Ansible Linux Automation works

LINUX HOSTS
Module code is
copied to the
managed node,
executed, then
removed

Verify Access

27

● Follow the steps to access environment
● Use the IP provided to you, the script only has example IP
● Which editor do you use on command line?

If you don’t know, we have a short intro

Exercise Time - Do Exercise 1.1 Now In Your
Lab Environment!

29

Exercise 1.2
Topics Covered:

● Ansible inventories

● Main Ansible config file

● Modules and ad-hoc commands

Inventory

30

● Ansible works against multiple systems in an inventory
● Inventory is usually file based
● Can have multiple groups
● Can have variables for each group or even host

Static inventory example:
[myservers]
10.42.0.2
10.42.0.6
10.42.0.7
10.42.0.8
10.42.0.100
host.example.com

Understanding Inventory - Basic

Groups can be nested

[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=kev
ansible_ssh_private_key_file=/home/kev/.ssh/id_rsa
 32

Understanding Inventory - Variables
[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=kev
ansible_ssh_private_key_file=/home/kev/.ssh/id_rsa

[webservers]
web01 ansible_host=52.14.208.176 tmp_dir=/tempdir
web02 ansible_host=52.14.208.179 tmp_dir=/tmpwsdir

[appservers]
app01 ansible_host=18.221.195.152
app02 ansible_host=18.188.124.127

[loadbalancers]
balancer01 ansible_host=3.15.11.56

[webservers:vars]
ansible_user=ec2-user
ansible_notify_owner=frances
apache_max_clients=288

Understanding Inventory - Variable Precedence

[webservers]
web01 ansible_host=52.14.208.176 tmp_dir=/tempdir
web02 ansible_host=52.14.208.179 tmp_dir=/tmpwsdir

[appservers]
app01 ansible_host=18.221.195.152
app02 ansible_host=18.188.124.127

[loadbalancers]
balancer01 ansible_host=3.15.11.56

[webservers:vars]
ansible_user=ec2-user
ansible_notify_owner=frances
apache_max_clients=288

Group variables apply for all
devices in that group

Host variables apply to the
host and override group vars

[user@ansible ~]$ cat /somedir/host_vars/app01

owner_name: Chris P. Bacon
owner_contact: 'cbacon@mydomain.tld'
server_purpose: Application X

[user@ansible ~]$ cat /somedir/group_vars/web

apache_listen_port: 8080
apache_root_path: /var/www/mywebdocs/

[user@ansible ~]$ cat /somedir/inventory

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[appxsrv]
app01
app02
app03

[user@ansible ~]$ cat /somedir/group_vars/web

apache_listen_port: 8080
apache_root_path: /var/www/mywebdocs/

34

Ansible Inventory - Managing Variables In Files
[user@ansible ~]$ tree /somedir

/somedir
├── group_vars
│ └── app1srv
│ └── db
│ └── web
├── inventory
└── host_vars
 └─ app01
 └─ app02
 └─ app03

[user@ansible ~]$ cat /somedir/host_vars/app01

owner_name: Chris P. Bacon
owner_contact: 'cbacon@mydomain.tld'
server_purpose: Application X

[user@ansible ~]$ tree /somedir

/somedir
├── group_vars-
│ └── app1srv
│ └── db
│ └── web
├── inventory-
└── host_vars-
 └─ app01
 └─ app02
 └─ app03

[user@ansible ~]$ cat /somedir/inventory

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[appxsrv]
app01
app02
app03

There is always a group called "all" by default

Groups can be nested

[nashville]
bnaapp01
bnaapp02

[atlanta]
atlapp03
atlapp04

[south:children]
atlanta
nashville
hsvapp05

35

Understanding Inventory - Groups

[nashville]
bnaapp01
bnaapp02

[atlanta]
atlapp03
atlapp04

[south:children]
atlanta
nashville
hsvapp05

Configuration File

36

● Basic configuration for Ansible
● Can be in multiple locations, with different precedence
● Here: .ansible.cfg in the home directory
● Configures where to find the inventory

Configuration files will be searched for in the following order:

37

The Ansible Configuration

➔ ANSIBLE_CONFIG (environment variable if set)

➔ ansible.cfg (in the current directory)

➔ ~/.ansible.cfg (in the home directory)

➔ /etc/ansible/ansible.cfg (installed as Ansible default)

First Ad-Hoc Command: ping

38

● Single Ansible command to perform a task quickly directly on
command line

● Most basic operation that can be performed
● Here: an example Ansible ping - not to be confused with ICMP

$ ansible all -m ping

ping

Groups can be nested

Check connections (submarine ping, not ICMP)
[user@ansible] $ ansible all -m ping

web1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/bin/python"
 },
 "changed": false,
 "ping": "pong"
}

39

Ad-Hoc Commands

Some basics to keep you from getting stuck

40

The Ansible Command

--help (Display some basic and extensive options)

[user@ansible ~]$ ansible --help-
Usage: ansible <host-pattern> [options]

Define and run a single task 'playbook' against a set of hosts

Options:
 -a MODULE_ARGS, --args=MODULE_ARGS
 module arguments
 --ask-vault-pass ask for vault password
 -B SECONDS, --background=SECONDS

… and about another 100 lines

Here are some common options you might use:

41

Ad-Hoc Commands

-m MODULE_NAME, --module-name=MODULE_NAME
Module name to execute the ad-hoc command

-a MODULE_ARGS, --args=MODULE_ARGS
Module arguments for the ad-hoc command

-b, --become
Run ad-hoc command with elevated rights such as sudo, the default method

-e EXTRA_VARS, --extra-vars=EXTRA_VARS
Set additional variables as key=value or YAML/JSON

Here are some common options you might use:

Groups can be nested

Check connections to all (submarine ping, not ICMP)
[user@ansible] $ ansible all -m ping

Run a command on all the hosts in the web group
[user@ansible] $ ansible web -m command -a "uptime"

Collect and display known facts for server “web1”
[user@ansible] $ ansible web1 -m setup

42

Ad-Hoc Commands

Using ansible-doc to list all modules

43

Ansible Modules

[user@ansible ~]$ ansible-doc --list-

a10_server Manage A10 Networks... server object.
a10_server_axapi3 Manage A10 Networks... devices
a10_service_group Manage A10 Networks... service groups
a10_virtual_server Manage A10 Networks... virtual server...
aci_aaa_user Manage AAA users (aaa:User)
aci_aep Manage attachable Access Entity Profile...
aci_aep_to_domain Bind AEPs to Physical or Virtual Domains...
aci_ap Manage top level Application Profile...
aci_bd Manage Bridge Domains (BD) objects...
aci_bd_subnet Manage Subnets (fv:Subnet)
aci_bd_to_l3out Bind Bridge Domain to L3 Out (fv:RsBDToOut)

... thousands of modules...

Using ansible-doc to specify one module

44

Ansible Modules

[user@ansible ~]$ ansible-doc copy-
> COPY (/usr/lib/python2.7/site-packages/ansible/modules/files/copy.py)

 The `copy' module copies a file from the local or remote machine to a location
on the remote machine. Use the [fetch] module to copy files from remote locations
 to the local box. If you need variable interpolation in copied files, use the
[template] module. For Windows targets, use the [win_copy] module instead.

 * note: This module has a corresponding action plugin.

OPTIONS (= is mandatory):

- attributes
 Attributes the file or directory should have. To get supported flags look at
the man page for `chattr' on the target system. This string should contain the
 attributes in the same order as the one displayed by `lsattr'.
 `=' operator is assumed as default, otherwise `+' or `-' operators need to be
included in the string.
 (Aliases: attr)[Default: (null)]
 version_added: 2.3

“I can’t find a module that does what I need it to do!”

45

Ansible Modules

command

shell

raw

script*

Exercise Time - Do Exercise 1.2 Now In Your
Lab Environment!

47

Exercise 1.3
Topics Covered:

● Playbooks basics

● Running a playbook

48

An Ansible Play in an Ansible Playbook

- hosts: db
 vars:
 software:
 - mariadb-server
 roles:
 - install_wordpress_db

- hosts: web
 vars:
 software:
 - httpd
 - php
 roles:
 - install_wordpress_web

A play

Another
play

This is not an exhaustive list, but contains most of the elements you will
commonly see in an Ansible play.

49

An Ansible Play (Common Elements)

Connections:

hosts The declarative list of hosts or groups against which this play will run.

connection Allows you to change the connection plugin used for tasks to execute on the target.

port Used to override the default port used in a connection.

remote_user User to define / override which user is connecting to the remote system

become Boolean that controls if privilege escalation is used or not on Task execution.
 (also become_flags, become_user, become_method)

This is not an exhaustive list, but contains most of the elements you will
commonly see in an Ansible play.

50

An Ansible Play (Common Elements)

Information Handling:

name Identifier. Can be used for documentation, in or tasks/handlers.

gather_facts Boolean (default yes) allows the bypass of fact gathering. This can speed up
connection time where facts are not needed in a playbook. This refers to the content
retrieved by the setup module.

no_log Boolean that controls information disclosure and logging.

ignore_errors Boolean. When set to yes, errors will be ignored unless absolutely fatal to the
playbook execution

check_mode Also known as “dry run” mode, will evaluate but not execute. For modules that support
check mode, the module will report the expected result without making any changes
as a result of the tasks.

This is not an exhaustive list, but contains most of the elements you will
commonly see in an Ansible play.

51

An Ansible Play (Common Elements)

Inventory Handling:
order Controls the sorting of hosts as they are used for executing the play. Possible values

are inventory (default), sorted, reverse_sorted, reverse_inventory and shuffle.

Variable Handling:
vars Dictionary/map of variables

vars_files List of files that contain vars to include in the play.

vars_prompt list of variables to prompt for on launch.

This is not an exhaustive list, but contains most of the elements you will
commonly see in an Ansible play.

52

An Ansible Play (Common Elements)

Task Handling:

pre_tasks A list of tasks to execute before roles.

roles List of roles to be imported into the play

tasks Main list of tasks to execute in the play, they run after roles and before post_tasks.

post_tasks A list of tasks to execute after the tasks section.

handlers Also known as “dry run” mode, will evaluate but not execute. For modules that support
check mode, the module will report the expected result without making any changes
as a result of the tasks.

53

Common Ansible Play Elements: Hosts

- name: install a LAMP stack
 hosts: web,db,appserver01
 become: yes
 vars:
 my_greeting: Welcome to my awesome page
 favorite_food: fried pickles

 roles:
 - install_lamp_elements

 tasks:
 - name: write the index file
 copy:
 content: {{ my_greeting }}. Enjoy some {{ favorite_food }}"
 dest: /var/www/html/index.html
 notify: reload_apache

 handlers:
 - name: reload_apache
 service:
 name: httpd
 state: reloaded

54

Ansible Tasks Using Modules:

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest

- name: Ensure latest index.html file is present
 copy:
 src: files/index.html
 dest: /var/www/html/

- name: Restart httpd
 service:
 name: httpd
 state: restart

55

Running an Ansible Playbook:

A task executed as expected, no change was made.

A task executed as expected, making a change

General text information and headers

A conditional task was skipped

A bug or deprecation warning

A task failed to execute successfully

The many colors of Ansible

56

Running an Ansible Playbook:
[user@ansible] $ ansible-playbook apache.yml

PLAY [webservers] ***

TASK [Gathering Facts] **
ok: [web2]
ok: [web1]
ok: [web3]

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]
ok: [web3]

TASK [Ensure latest index.html file is present] ***
ok: [web2]
ok: [web1]
ok: [web3]

TASK [Restart httpd] **
ok: [web2]
ok: [web1]
ok: [web3]

PLAY RECAP **
webservers : ok=3 changed=3 unreachable=0 failed=0

The “Setup” module

The “yum” module

The “copy” module

The “service” module

Exercise Time - Do Exercise 1.3 Now In Your
Lab Environment!

58

Exercise 1.4
Topics Covered:

● Working with variables

● What are facts?

59

An Ansible Playbook Variable Example

- hosts: all

 vars:
 var_one: one is the loneliest number
 var_two: two can be as sad as one
 var_three: three dog night said that
 var_four: "{{ var_three }} {{ var_one }}"
 var_five: "and that {{ var_two }}."

three dog night said that one is the loneliest number
and that two can be as sad as one.

60

Ansible Variables and Facts

 vars:
 mynewip: 10.7.62.39-

 "ansible_facts": {
 "ansible_default_ipv4": {
 "address": "10.41.17.37",
 "macaddress": "00:69:08:3b:a9:16",
 "interface": "eth0",
...

DEVICE="{{ ansible_default_ipv4.interface }}"
ONBOOT=yes
HWADDR={{ ansible_default_ipv4.macaddress }}
TYPE=Ethernet
BOOTPROTO=static
IPADDR={{ mynewip }}

This is a template file
for ifcfg-eth0, using a
mix of discovered
facts and variables to
write the static file.

A variable,
defined in
our playbook

Ansible can work with metadata from various sources as variables. Different
sources will be overridden in an order of precedence.

61

Variable Precedence

1. extra vars (Highest - will override anything else)

2. task vars (overridden only for the task)

3. block vars (overridden only for tasks in block)

4. role and include vars
5. play vars_files
6. play vars_prompt
7. play vars
8. set_facts

9. registered vars
10. host facts
11. playbook host_vars

12. playbook group_vars
13. inventory host_vars
14. inventory group_vars
15. inventory vars
16. role defaults (Lowest - will be

overridden by anything else listed here)

62

Facts

● Just like variables, really...
● ...but: coming from the host itself!
● Check them out with the setup module

CONFIDENTIAL Designator

Gather facts on target machine

63

$ ansible -m setup
localhost | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.122.1",
 "172.21.208.111"
],
 "ansible_all_ipv6_addresses": [
 "fe80::8f31:b68d:f487:2775"
],

Exercise Time - Do Exercise 1.4 Now In Your
Lab Environment!

65

Exercise 1.5
Topics Covered:

● Conditionals

● Handlers

● Loops

Choose your own adventure, based on variables, facts and more!

66

Advanced Playbooks: Conditionals via VARS

 vars:
 my_mood: happy

 tasks:
 - name: conditional task, based on my_mood var

 tasks:
 - name: conditional task, based on my_mood var debug:
 msg: "Come talk to me. I am {{ my_mood }}!"
 when: my_mood == happy

 debug:
 msg: "Feel free to interact. I am {{ my_mood }}"
 when: my_mood != grumpy

Alternatively
:

Choose your own adventure, based on variables, facts and more!

67

Advanced Playbooks: Conditionals via FACTS

 tasks:
 - name: Install apache
 apt:
 name: {{ item }}
 state: latest
 with_items:
 - apache2
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: Install httpd
 yum:
 name: {{ item }}
 state: latest
 with_items:
 - httpd
 when: ansible_distribution == 'Red Hat Enterprise Linux'

This is NOT a handler task, but has similar function

68

Advanced Playbooks: (this is not an example of) Handler Tasks

- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 register: http_results

- name: Restart httpd
 service:
 name: httpd
 state: restart
 when: httpd_results.changed

A handler task is run when a referring task result shows a change.

69

Advanced Playbooks: Handler Tasks

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

handlers:
- name: restart_httpd
 service:
 name: httpd
 state: restart
 when: httpd_results.changed

What happens when a handler task is called?

70

Advanced Playbooks: Handler Tasks

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd-

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd-

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
ok: [web2]
ok: [web1]

NOTIFIED: [restart_httpd] ***
ok: [web2]
ok: [web1]

If either one of
these tasks
notifies of a
changed result,
the handler will
be notified ONCE.

UNCHANGED

CHANGED

HANDLER RUNS ONCE

What happens when a handler task is called more than once?

71

Advanced Playbooks: Handler Tasks

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd-

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd-

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
ok: [web2]
ok: [web1]

NOTIFIED: [restart_httpd] ***
ok: [web2]
ok: [web1]

If both of these
tasks notifies of a
changed result,
the handler will
be notified ONCE.

CHANGED

CHANGED

HANDLER RUNS ONCE

What happens when no tasks notify a handler task?

72

Advanced Playbooks: Handler Tasks

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd-

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd-

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
ok: [web2]
ok: [web1]

PLAY RECAP **
web2 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
web1 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

If neither one of
these tasks
notifies of a
changed result,
the handler task
does not run.

UNCHANGED

UNCHANGED
HANDLER DOESN’T RUN AT ALL

Using loops to save time with tasks

73

- yum:
 name: httpd
 state: latest

- yum:
 name: httpd-tools
 state: latest

- yum:
 name: mysql-server
 state: latest

- yum:
 name: php56-mysql
 state: latest

Advanced Playbooks: Variables & Loops

THIS

Using loops to save time with tasks

74

Advanced Playbooks: Variables & Loops

- name: ensure a list of packages installed
 yum:
 name: "{{ packages }}"
 state: latest
 vars:
 packages:
 - httpd
 - httpd-tools
 - mysql-server
 - php56-mysqlnd
 - php56-common
 - php56-xml

Using loops to save time with tasks

75

Advanced Playbooks: Variables & Loops

 vars:
 bad_packages:
 - "@^gnome-desktop-environment"
 - make
 - gcc
 - tftp-server
 - telnet-server

 tasks:
 - name: list of bad packages are not present
 yum:
 name: "{{ bad_packages }}"
 state: absent
 check_mode: yes

Exercise Time - Do Exercise 1.5 Now In Your
Lab Environment!

77

Exercise 1.6
Topics Covered:

● Templates

Using a system fact or declared variable to write a file

78

Advanced Playbooks: Variables & Templates

- name: Ensure apache is installed and started
 hosts: web
 become: yes
 vars:
 http_port: 80
 http_docroot: /var/www/mysite.com

 tasks:
 - name: Verify correct config file is present
 template:
 src: templates/httpd.conf.j2
 dest: /etc/httpd/conf/httpd.conf

Excerpt from httpd.conf.j2

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.
#
Listen 80 ## original line

Listen {{ http_port }}

DocumentRoot: The directory out of which you will serve your
documents.
DocumentRoot "/var/www/html"

DocumentRoot {{ http_docroot }}

Exercise Time - Do Exercise 1.6 Now In Your
Lab Environment!

80

Exercise 1.7
Topics Covered:

● What are roles?

● How they look like

● Galaxy

81

Roles

● Roles: Think Ansible packages
● Roles provide Ansible with a way to load tasks, handlers, and

variables from separate files.
● Roles group content, allowing easy sharing of code with others
● Roles make larger projects more manageable
● Roles can be developed in parallel by different administrators

Better start using roles now!

Role structure

82

user/

├── defaults
│ └── main.yml
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

● Defaults: default variables with
lowest precedence (e.g. port)

● Handlers: contains all handlers
● Meta: role metadata including

dependencies to other roles
● Tasks: plays or tasks

Tip: It’s common to include tasks in
main.yml with “when” (e.g. OS ==
xyz)

● Templates: templates to deploy
● Tests: place for playbook tests
● Vars: variables (e.g. override port)

Sharing
Content

83

Ansible Galaxy

Roles, and
more

Community

Exercise Time - Do Exercise 1.7 Now In Your
Lab Environment!

85

Exercise 1.8
Topics Covered:

● A bonus lab - try it on your own, and when

time permits

86

You are on your own!

You know it all - now use it!

Exercise Time - Do Exercise 1.8 Now In Your
Lab Environment!

88

Section 2
Tower

89

Exercise 2.1
Topics Covered:

● Introduction to Tower

Ansible Tower is a UI and RESTful API allowing
you to scale IT automation, manage complex
deployments and speed productivity.

• Role-based access control

• Deploy entire applications with
 push-button deployment access

• All automations are centrally logged

• Powerful workflows match your IT processes

What is Ansible Tower?

RBAC

Allow restricting playbook access to
authorized users. One team can use
playbooks in check mode (read-only)
while others have full administrative
abilities.

Push button

An intuitive user interface experience
makes it easy for novice users to
execute playbooks you allow them
access to.

RESTful API

With an API first mentality every
feature and function of Tower can be
API driven. Allow seamless integration
with other tools like ServiceNow and
Infoblox.

Workflows

Ansible Tower’s multi-playbook
workflows chain any number of
playbooks, regardless of whether they
use different inventories, run as
different users, run at once or utilize
different credentials.

 Enterprise integrations

Integrate with enterprise
authentication like TACACS+, RADIUS,
Azure AD. Setup token authentication
with OAuth 2. Setup notifications with
PagerDuty, Slack and Twilio.

Centralized logging
All automation activity is securely
logged. Who ran it, how they
customized it, what it did, where it
happened - all securely stored and
viewable later, or exported through
Ansible Tower’s API.

Red Hat Ansible Tower

USE
CASES

USERS

ANSIBLE
ENGINE PYTHON CODEBASE

OPEN SOURCE MODULE LIBRARY

PLUGINS

CLOUD

AWS,
GOOGLE CLOUD,
AZURE …

INFRASTRUCTURE

LINUX,
WINDOWS,
UNIX …

NETWORKS

ARISTA,
CISCO,
JUNIPER …

CONTAINERS

DOCKER,
LXC …

SERVICES

DATABASES,
LOGGING,
SOURCE CONTROL
MANAGEMENT…

TRANSPORT

SSH, WINRM, ETC.

AUTOMATE
YOUR

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE TOWER API

ROLE-BASED
ACCESS CONTROL

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

CONFIGURATION
MANAGEMENT

APP
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING

Exercise Time - Do Exercise 2.1 Now In Your
Lab Environment!

94

Exercise 2.2
Topics Covered:

● Inventories

● Credentials

Inventory is a collection of hosts (nodes)
with associated data and groupings that
Ansible Tower can connect to and
manage.

● Hosts (nodes)
● Groups
● Inventory-specific data (variables)
● Static or dynamic sources

Inventory

Credentials are utilized by Ansible Tower for
authentication with various external resources:

● Connecting to remote machines to run jobs
● Syncing with inventory sources
● Importing project content from version control

systems
● Connecting to and managing network devices

Centralized management of various credentials
allows end users to leverage a secret without ever
exposing that secret to them.

Credentials

Exercise Time - Do Exercise 2.2 Now In Your
Lab Environment!

98

Exercise 2.3
Topics Covered:

● Projects

● Job Templates

A Project is a logical collection of Ansible
Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and
playbook directories by placing them in a
source code management system
supported by Ansible Tower, including Git,
Subversion, and Mercurial.

Projects

Everything in Ansible Tower revolves around the concept of a Job Template.
Job Templates allow Ansible Playbooks to be controlled, delegated and scaled
for an organization.

Job templates also encourage the reuse of Ansible playbook content and
collaboration between teams.

A Job Template requires:
● An Inventory to run the job against
● A Credential to login to devices.
● A Project which contains Ansible Playbooks

Job Templates

A Job Template is where all the pieces
come together, defining how your
Ansible job will run. A Job Template is
made up of:

● Inventory
● Project (containing a playbook)
● Credentials
● Survey or optional vars
● Jobs can be launched via GUI or API

Job Templates

Job Templates can be found and created by clicking the Templates
button under the RESOURCES section on the left menu.

Expanding on Job Templates

Job Templates can be launched by clicking the rocketship button
for the corresponding Job Template

Executing an existing Job Template

New Job Templates can be created by clicking the plus button

Creating a new Job Template (1/2)

This New Job Template window is where the inventory, project and credential
are assigned. The red asterisk * means the field is required .

Creating a new Job Template (2/2)

Exercise Time - Do Exercise 2.3 Now In Your
Lab Environment!

108

Exercise 2.4
Topics Covered:

● Surveys

Tower surveys allow you to configure how a job runs via a series of questions,
making it simple to customize your jobs in a user-friendly way.

An Ansible Tower survey is a simple question-and-answer form that allows users to
customize their job runs. Combine that with Tower's role-based access control, and
you can build simple, easy self-service for your users.

Surveys

Once a Job Template is saved, the Add Survey Button will appear

Click the button to open the Add Survey window.

Creating a Survey (1/2)

The Add Survey window allows the Job Template to prompt users for one or more
questions. The answers provided become variables for use in the Ansible Playbook.

Creating a Survey (2/2)

When launching a job, the user will now be prompted with the Survey. The user can
be required to fill out the Survey before the Job Template will execute.

Using a Survey

Exercise Time - Do Exercise 2.4 Now In Your
Lab Environment!

114

Exercise 2.5
Topics Covered:

● Role based access control

Role-Based Access Controls (RBAC) are built into Ansible
Tower and allow administrators to delegate access to
inventories, organizations, and more. These controls allow
Ansible Tower to help you increase security and streamline
management of your Ansible automation.

Role Based Access Control (RBAC)

● An organization is a logical collection of users,
teams, projects, inventories and more. All entities
belong to an organization with the exception of
users.

● A user is an account to access Ansible Tower and
its services given the permissions granted to it.

● Teams provide a means to implement role-based
access control schemes and delegate
responsibilities across organizations.

User Management

Clicking on the Organizations button in the left menu
will open up the Organizations window

Viewing Organizations

Clicking on the Teams button in the left menu
will open up the Teams window

Viewing Teams

Clicking on the Users button in the left menu
will open up the Users window

Viewing Users

Exercise Time - Do Exercise 2.5 Now In Your
Lab Environment!

121

Exercise 2.6
Topics Covered:

● Workflows

Workflows can be found alongside Job Templates by clicking the Templates
button under the RESOURCES section on the left menu.

Workflows

To add a new Workflow click on the green + button
This time select the Workflow Template

Adding a new Workflow Template

Fill out the required parameters and click SAVE. As soon as the
Workflow Template is saved the WORKFLOW VISUALIZER will open.

Creating the Workflow

The workflow visualizer will start as a blank canvas.

Workflow Visualizer

Workflows can branch out, or converge in.

Visualizing a Workflow

Green indicates this Job
Template will only be run if the
previous Job Template is
successful

Red indicates this Job
Template will only be run if the
previous Job Template fails

Blue indicates this Job
Template will always run

Exercise Time - Do Exercise 2.6 Now In Your
Lab Environment!

128

Exercise 2.7
Topics Covered:

● Wrap-up

129

You are on your own!

You know it all - now use it!

Exercise Time - Do Exercise 2.7 Now In Your
Lab Environment!

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/ansibleautomation

twitter.com/ansible

github.com/ansible

CORPORATE SLIDE TEMPLATES

131

Thank you

